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ABSTRACT

In their comment, �Zagar and Szunyogh raised concerns about a recent study by Zhang et al. that

examined the predictability limit of midlatitude weather using two up-to-date global models. Zhang

et al. showed that deterministic weather forecast may, at best, be extended by 5 days, assuming we could

achieve minimal initial-condition uncertainty (e.g., 10% of current operational value) with a nearly

perfect model. �Zagar and Szunyogh questioned the methodology and the experiments of Zhang et al.

Specifically, �Zagar and Szunyogh raised issues regarding the effects of model error on the growth of the

forecast uncertainty. They also suggested that estimates of the predictability limit could be obtained

using a simple parametric model. This reply clarifies the misunderstandings in �Zagar and Szunyogh and

demonstrates that experiments conducted by Zhang et al. are reasonable. In our view, the model error

concern in �Zagar and Szunyogh does not apply to the intrinsic predictability limit, which is the key focus

of Zhang et al. and the simple parametric model described in �Zagar and Szunyogh does not serve the

purpose of Zhang et al.

1. Introduction

Predictability is a fundamental concept for numerical

weather prediction (NWP). As the numerical prediction

proceeds, dynamical instabilities and chaotic nonlinear

interactions cause the forecast uncertainty to increase

until the differences between individual ensemble

forecasting members are statistically indistinguishable

from random draws from the numerical model’s climate.

After that, NWP provides no information that could not

be readily obtained from a previously generated model

Denotes content that is immediately available upon publica-

tion as open access.

a Deceased.

Corresponding author: Y. Qiang Sun, ys5@princeton.edu

FEBRUARY 2020 CORRES PONDENCE 787

DOI: 10.1175/JAS-D-19-0308.1

� 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 08:01 PM UTC

mailto:ys5@princeton.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


climate, which means the predictability is lost under this

NWP system. The time interval between the initial time

of the integration and the time at which predictability is

lost is usually called the practical predictability limit for

an NWP system (see, e.g., Buizza and Leutbecher 2015).

If the model and/or initial-condition errors can be re-

duced, then this practical predictability limit can be ex-

tended. Yet Lorenz (1969, hereafter L69) shows that

there is likely an intrinsic finite predictability limit for

the atmosphere that cannot be further extended due to

very rapid error growth at small scales combined with

nonlinear interaction between different scales (so-called

butterfly effect). This intrinsic predictability limit for

our atmosphere is supported and verified by follow-up

studies (e.g., Tribbia and Baumhefner 2004; Froude

et al. 2013; Selz and Craig 2015; Judt 2018) and now

widely accepted.

Zhang et al. (2019, hereafter Z19) studied the pre-

dictability limit of midlatitude weather using global

convection-permitting models, with a focus on the in-

trinsic predictability limit for day-to-day synoptic

weather system. In other words, Z19 tried to address the

long-lasting intriguing question since L69: how far our

NWP skill could be further extended? The methodology

used in Z19 is similar to identical-model twin experi-

ments, where the same numerical model is integrated

from nearly identical initial states until predictability is

lost. Under a perfect-model assumption, this kind of

experiment will provide an estimate for the intrinsic

predictability limit. This is a common approach in pre-

dictability studies (e.g., Tribbia and Baumhefner 2004;

Zhang et al. 2003, 2007; Mapes et al. 2008; Judt 2018).

Given the assumption of a perfect model, the accuracy

of this estimate largely depends on how realistically

the model can simulate reality. There is growing evi-

dence showing that moist physics plays a critical role in

the upscale error growth (e.g., Zhang et al. 2003; Selz

and Craig 2015; Sun and Zhang 2016). Therefore, the

ability of a model to resolve small-scale moist physics is

critical for examining the growth of the errors and pro-

viding an accurate estimate for the intrinsic finite range

of the predictability. In addressing this problem, Z19

used the most up-to-date (at that time) high-resolution

full-physics global models: the 9-km version of the op-

erational model at ECMWF, and a uniform 3-km ex-

perimental finite-volume cubed-sphere model developed

at GFDL during the next-generation global prediction

system (NGGPS) project in the United States. These

models can give us state-of-the-art, intrinsic predictability

estimates.

Two types of perturbation experiments were con-

ducted in Z19. One ensemble was started from the

first 10 of the 21 available members of the operational

ensemble of 4DVar analyses (EDA) in ECMWF,

whereas the other was started from the same analyses

after a rescaling of the analysis perturbations by a factor

of 10. The former ensemble is representative of our

current day initial-condition errors, while the latter was

aimed to address the intrinsic predictability limit. Both

ECMWF and U.S. global convection-permitting models

in Z19 show very consistent results, implying that our

current day deterministic weather forecast may be fur-

ther extended by up to 5 days.

In their comment to Z19, �Zagar and Szunyogh (2020,

hereafter ZS) raised several concerns about Z19’s

methodology and conclusions. They first questioned

the perturbations used in Z19, arguing EDA-only type

perturbations and the rescaling of these perturbations

‘‘do not provide realistic simulations of either the

current-day operational, or the future ideal evolution

of the forecast errors.’’ Another major issue they raised

is related to the impacts of model error on the growth of

forecast uncertainty. They also suggested the use of a

parametric model for estimates of the extension of the

practical predictability.

We would like to thank ZS for providing the chance

to further clarify our findings in Z19, as many of the

concerns in ZS are due to their misunderstanding of the

aims of Z19 and the approach adopted there. In our

reply here, section 2 shows that the use of EDA per-

turbations in Z19 is reasonable and consistent. In

section 3 we will then show that the model error ar-

gument and the suggested parametric model in ZS are

invalid. A summary is given in section 4.

2. Representation of the analysis and forecast
uncertainties

a. EDA-only perturbations

ZS pointed out that the operational ECMWF en-

semble prediction system (ENS) needs to supplement

the EDA initial-condition perturbations with singular

vector initial-condition perturbations and a parame-

terization of the effect of model errors to realistically

simulate the evolution of the forecast uncertainty

(Isaksen et al. 2010; Leutbecher et al. 2017; Haiden

et al. 2018). Therefore, ZS suspected that including

only a subset of 10 of the EDA perturbations and

not including the singular vector perturbations and

the parameterization of the effect of model errors,

may have hampered the ensemble in Z19 from fully

capturing the forecast uncertainty for an extended

forecast time.

We want to first note that this argument of ZS applies

more to the practical predictability scenario (EDA case
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in Z19). The study of Z19, however, focuses on the in-

trinsic predictability scenario (EDA0.1 case). Motivated

by L69, the key question Z19 aims to address is ‘‘With a

nearly perfect model, to what limit does the predict-

ability horizon of NWP could approach as the initial

error approaches zero?’’ In this case, the use of EDA-

only perturbations guarantees that no model error is

introduced into the integration, which ensures that the

initial growth of the forecast uncertainty in EDA0.1 is

largely due to the butterfly effect idea Lorenz originally

proposed. On the contrary, both the singular vector

perturbations and the model error schemes are devel-

oped in part to address deficiencies of the model, which

is contrary to the perfect model assumption in the

EDA0.1 experiment. If they were adopted, it would be

hard for us to know whether the initial growth of the

spread in the EDA0.1 scenario is due to these model

error schemes or due to the upscale error propagation

we focused on in Z19. Hence, not using singular vectors

and model error schemes are justified in experiments

targeting intrinsic predictability.

By using a subset of EDA perturbations, Z19 not

only wants to ‘‘observe the process of forecast uncer-

tainty growth without the influence of the unique dy-

namics of singular vectors’’ as mentioned in ZS but also

tries to be more consistent with the intrinsic predict-

ability scenario (the main focus of Z19). While we ac-

knowledge that using only 10 EDA members is not the

best way of estimating the practical predictability, we

show that the use of 10 members is also reasonable for

the study of practical predictability in Z19. As we do

not have the computer resources to rerun the experi-

ments, we here explore the THORPEX International

Grand Global Ensemble (TIGGE) dataset to better

represent forecast uncertainty growth in the opera-

tional centers (Bougeault et al. 2010). The TIGGE

dataset consists of ensemble forecast data from 10

global NWP centers, starting fromOctober 2006, which

has been collected in real time and made available for

scientific research. ECMWF in TIGGE dataset con-

sists of one control forecast member and all 50 per-

turbed forecast members, generated using EDA and

singular vector perturbations to simulate initial un-

certainties (Buizza et al. 2008), also including sto-

chastic parameterizations to simulate the effect of

model errors (Palmer et al. 2009).

Figure 1 shows the evolution of the ensemble vari-

ance of 500-hPa winds in the 50 perturbed ensemble

members in the TIGGE dataset, calculated using the

same method as in Fig. 3 of Z19 for the same summer

case. We find that forecast uncertainty in the TIGGE

dataset does grow faster in the first few days, which is ex-

pected due to the nature of singular vector perturbations

and added model errors. We also see that ensemble

variance using only the first 10 of the 50 available TIGGE

members produce almost identical results as that us-

ing all the 50 members, implying that an ensemble of

10 members is valid for the metric considered in Z19.

It is worth pointing out that, although slower initially,

the growth rate of ensemble variance in Z19 shows little

difference from that in the 50 member TIGGE (even

slightly larger due to less saturation effect) after 2 days.

As the nonlinear processes becomemore important, and

the linearly computed singular vectors lose their opti-

mality, the difference between Z19 and TIGGE also

becomes smaller and smaller. In summary, we agree that

singular vector perturbations could bring faster initial

error growth for the EDA case, but we would argue that

this has a small impact on the estimation of the practical

predictability limit, provided that the estimated limit is

beyond this short forecast range, as reported by Z19.

Concerning the inclusion of model error schemes in

Z19’s ensembles of the practical predictability scenario,

we would also argue that including stochastic parame-

terizations would not have changed fundamentally re-

sults of Z19 based on Fig. 1. Results from ECMWF (see,

e.g., Palmer et al. 2009) have indeed shown that the in-

clusion of model error schemes has a small impact, on

average and globally, by ;5%–10%.

b. Rescaling

To investigate the intrinsic predictability limit of

midlatitude weather systems, Z19 rescaled the EDA

perturbations by a constant factor of 10 to reduce the

magnitude of the perturbations and achieved nearly

perfect initial conditions. Given that EDA-type per-

turbations have larger amplitudes in the tropics and at

larger scales, the rescaling will lead to, in the abso-

lute sense, more reduction at larger scales and in

the tropical region. ZS then suspected that ‘‘reduced

initial-condition uncertainties in the tropics and at the

large scales must have played a major role in the in-

creased predictability in the midlatitudes in the ex-

periments of Z19.’’ This is speculative. Rescaling the

perturbations is one way to investigate the sensitivity

to a reduction of the initial-condition errors to a

minimum, and thus to assess the intrinsic predictability

limit. It is hard to separate the downscale propagation

of the large-scale errors and the local error growth in

the small scales due to a very short time scale for both

processes. In fact, for the intrinsic predictability limit,

as long as the amplitude of the perturbation is suffi-

ciently small, the scale dependence of the minute

perturbations is not so important. Sun and Zhang

(2016) showed that minute perturbations at large scale

show a very similar evolution path to the noise type

FEBRUARY 2020 CORRES PONDENCE 789

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 08:01 PM UTC



perturbation experiment, which is also seen in Durran

and Weyn (2016).

c. b term

ZS discussed also one diagnostic model used in Z19

to study error growth, which is reported here:

d«(t)

dt
5 [a«(t)1b][12 «(t)] , (1)

where «(t) is the normalized error.1 One difference be-

tween Z19 and some previous studies (e.g., Dalcher and

Kalnay 1987; Magnusson and Källén 2013; �Zagar et al.

2017) is that «(t) is the ensemble spread for the 10 en-

semble members in Z19, which does not contain model

error at all. Hence the growth of «(t) in Z19 has zero

contribution from model error; b is the ‘‘super-

exponential’’ term that represents the intrinsic error

growth even if the model is perfect and the initial-

condition error «(0) is 0. If b5 0, thenEq. (1) describes a

simple exponential error growth, in which our forecast

skill could be improved without any limit if we keep

reducing the initial-condition error «(0). We agree with

ZS in that similar superexponential error growth can be

found in coarse-resolution full-physics models (Harlim

et al. 2005). Otherwise, there would be no intrinsic

predictability limit for the weather systems in these

coarse-resolution models. Nonetheless, as pointed in

Z19 and the introduction, moist physics might be the key

to this intrinsic predictability limit. For example, Sun

and Zhang (2016) showed that the Gaussian white noise

perturbations added to the dry model will decay for the

first 36 h, compared to their rapid growth in the moist

model. Therefore, to get an accurate estimate for the

intrinsic predictability limit, we believe that the global

convection-permitting model, which at least partially

resolves the moist convection process, is the best tool to

use. As stated in Buizza (2010) and Bengtsson et al.

(2008), although these simple error-growth models are

useful tools to investigate forecast error growth, they

have difficulties in describing the error growth at short

forecast ranges, and thus should be used with care.

3. Model versus initial-condition improvements
and the parametric model

a. Model error

While the practical predictability limit for an NWP

system is greatly affected by model errors and model

bias, it is common to adopt the perfect model assump-

tion when estimating the intrinsic predictability limit. As

pointed in the introduction and Z19, the accuracy of the

estimation of the intrinsic predictability limit does de-

pend strongly on how well the model captures physical

processes in the real world. This is also the reason that

Z19 chose two of the most up-to-date global models

available at that time. Consistency between these two

very different models strengthens our confidence in the

FIG. 1. (a) Evolution of forecast uncertainty growth in terms of ensemble variance of 500-hPa wind energy

averaged over the NH midlatitudes (308–608N) from TIGGE dataset (black line: all 50 perturbed members; red

line: the first 10 members in TIGGE data) and Z19 for June 2016 case. (b) Error growth rate [ln(Et1Dt/Et), where

Dt 5 12 h] calculated using data in (a).

1We normalize «(t) as «(t) 5 (E/Emax), where E and Emax are

defined in Eq. (2); b here is also normalized by Emax. Z19 did not

present the value of Emax. However, it can be seen from the top

panels of Figs. 3 and 4 in Z19 that the errors in both EDA and

EDA0.1 experiments approach the same saturation value at the

end of the integration. The value of Emax is calculated as the av-

erage ofE in EDA and EDA0.1 for the last day (day 20). The value

ofEmax is larger in the winter than that of the summer, on the order

of ;100m2 s22 (Figs. 3a,b of Z19). Also, the same parameter is

used to fit both EDA and EDA0.1 experiments in Z19.
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results reported in Z19. Moreover, some systematic

model bias does not necessarily change the intrinsic

predictability of the system. For example, a trivial dis-

location of small mountains will certainly generate a

model bias, but it shall not change the intrinsic pre-

dictability of the flow. Nonetheless, there is still a pos-

sibility that the scenario and estimation for the intrinsic

limit would be different once the grid spacing of the

global model drops below about 1 km and moist con-

vection becomes fully resolved. New experiments with

more advanced models should be conducted to answer

this question.

Z19 stated that achieving the ‘‘up to 5 days’’ potential

gain ‘‘requires coordinated efforts by the entire com-

munity to design better numerical weather models [em-

phasis added], to improve observations, and to make

better use of observations with advanced data assimi-

lation and computing techniques.’’ Although the re-

quirement of reducing model error is implied by this

statement and the perfect model assumption in Z19, Z19

did not explicitly state it. We welcome the opportunity

to do it here to avoid misunderstandings as in ZS.

Reducing initial-condition error alone will surely not

achieve this potential ‘‘up to 5 days’’ gain reported inZ19.

The best way to evaluate the impact of model error is

running experiments using different models under the

same initial and boundary conditions and then compare

the model performance (Magnusson et al. 2019). This

kind of experiment is usually conducted for continuous

operational model development (Haiden et al. 2018).

Yet, as model development is generally done piece by

piece and takes years, sometimes a decade, to see sig-

nificant improvements in the weather forecast skill of an

NWP system, very few systematic results are published.

b. Parametric model in ZS

We agree with ZS that parametric analytical models

for the average growth of the forecast uncertainty are

useful. Equation (1), which is used in Z19, also serves

this purpose. Yet one needs to be cautious not to over-

interpret the results of these parametric models, as the

parameters are fitted and could be affected by many

factors.

For convenience, themodel used in �Zagar et al. (2017)

is listed here [their Eq. (12)]:

dE

dt
5 s(E

max
2E)(E2E

min
) , (2)

where E is the forecast uncertainty, Emax and Emin are

the maximal and minimal values of the model function

according to �Zagar et al. (2017) and E 2 [Emin, Emax]. It

can be shown that Eq. (2) is just a variant of Eq. (1).

They are equivalent mathematically. Simply let a 5
sEmax and g 5 2sEmaxEmin, then Eq. (2) becomes

dE

dt
5a

�
12

E

E
max

��
E1

g

a

�
5 (aE1 g)

�
12

E

E
max

�
.

(3)

This is similar to Eq. (1), except that Eq. (1) is normal-

ized by Emax.

Whereas similar mathematical models are used in

ZS and Z19, the application of the models and the

interpretation are very different. Given that �Zagar

et al. (2017) and ZS applied this model to the opera-

tional dataset, model error plays a role in their study.

In the experiment of Z19, as discussed above, the

growth of the forecast uncertainty has no contribu-

tion from model error; therefore, b is mainly in-

terpreted as the intrinsic upscale error propagation

from small scales.

ZS applied the model to different horizontal scales

(each different horizontal wavenumber). Figure 1 of ZS

also compared their fitted results of June 2018 and May

2015, claiming that more improvement is achieved at

subsynoptic and even smaller scales. However, this is

not a fair comparison. The forecast skill of operational

models has a large variation for different months,

showing a strong seasonal cycle (Haiden et al. 2018).

The seasonal cycle signal is much larger than the im-

provement observed in the past few years. The differ-

ences between results for June 2018 and May 2015

shown in Fig. 1 of ZS are likely due to different large-

scale flow patterns and different forcing for these two

periods. A valid comparison would be running the up-

dated model again under May 2015 initial conditions to

show the impact of model improvement. Alternatively,

the old model in 2015 could be used to run the 2018

initial conditions for a better understanding of the im-

pact of reduced initial conditions.

It is also questionable trying to use this parametric

model to predict the effect of reducing initial-condition

errors as shown in Fig. 2 of ZS. ZS processes each hor-

izontal scale separately. However, given the strong in-

teractions between different horizontal scales, it is

almost meaningless to examine the effect of reducing

the initial-condition error for a certain horizontal scale

only (as in Fig. 2 of ZS) without knowing the informa-

tion of the initial-condition errors at other scales. For

example, if we reduce the initial-condition error only at

k5 35 while keeping the initial-condition errors at other

horizontal scales the same, then it is most likely we will

not see any improvement in the forecast skill for this

same horizontal scale (k 5 35). The strong cross-scale

interaction will very quickly fill the initial small gap
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at k 5 35, making the reduction at this certain scale

negligible. This example also indicates that the error

growth rate at a certain horizontal scale (e.g., k 5 35) is

affected by the errors at this scale and other horizontal

scales. Therefore, reducing the initial-condition errors

will surely change the error growth rate and the associ-

ated parameters in the parametric model. Estimates

made based on fixed parameters as in ZS then become

less convincing.

A similar yet more meaningful problem would be,

How much gain shall we expect for each scale if the

initial-condition errors are reduced by a certain per-

centage (e.g., 75%) at all scales? This would be close to

the example given in Fig. 2 of ZS.2 However, it is very

difficult to provide an answer to this kind of question

using a simple parametric equation due to strong cross-

scale interactions. We will briefly illustrate this next.

The calculation in ZS used fixed parameters for their

parametric model. Hence the evolution of the errors in

their model only depends on the amplitude of the er-

rors. The additional gain calculated in ZS is therefore

simply the time needed for the reduced errors to grow

back to their original values. Assume we have these

estimates for different horizontal scales as calculated in

ZS, defined as t1, t2, . . . , tn for wavenumber k1, k2, . . . , kn.

Initially, errors at all the scales are reduced (e.g., by

75%), after a certain time tm (e.g., the median number

of t1, t2, . . . , tn), then errors at some scales (with es-

timated time that is less than tm) will grow larger than

their original values according to the fixed parametric

model, whereas errors at other scales would still be

smaller than their original values. The distribution of

the errors would then be very different from the

original error distribution unless t1 5 t2 5 . . .5 tn. The

error growth rate afterward would soon be very dif-

ferent due to cross-scale interaction, which corre-

spondingly shall change the parameters of this

parametric model. Hence, the estimation made based

on fixed parameters becomes invalid. In fact, the best

way to answer this question is by using numerical

models as in Z19. Z19 also provided qualitatively an-

swers to this kind of question, implying that we shall see

more gain at relatively larger scales, consistent with a

longer intrinsic predictability limit at larger scales.

After all, one should never expect a deterministic

model to forecast the genesis of a tornado (with hori-

zontal scales of hundreds of meters) at a specific loca-

tion 1 day ahead.

In summary, we disagree with the conclusions drawn in

ZS using the parametric model due to strong interactions

between different scales. It is also difficult to relate them

to the results of Z19.

4. Summary

Z19 investigated the predictability limit of midlat-

itude weather systems, with a focus on the intrinsic

predictability limit of a deterministic forecast. Using

the 9-km model currently running operationally at

ECMWF and the 3-km experimental model devel-

oped in GFDL, Z19 concluded that ‘‘assuming the

current-generation state-of-the-science NWP models

could capture the most essential physical processes

in the real world, we can further improve the fore-

cast accuracy of day-to-day weather events by up to

5 days.’’ Achieving this additional potential gain re-

quires continued coordinated efforts by the entire

community to design more accurate and better NWP

models (reducing model error), improve and enhance

the observing techniques and networks, and make

better use of observations with advanced data assim-

ilation (reducing initial-condition error).

ZS criticizes that Z19 used only a subset of 10 of the

EDA perturbations and did not include the singular

vector perturbations and parameterizations of model

errors. We think that the ZS’s comments apply more to

practical predictability than to intrinsic predictability,

which was the focus of Z19. For the intrinsic predict-

ability limit (EDA0.1 experiment in Z19), adding sin-

gular vector perturbations and stochastic schemes will

complicate our interpretation of the initial growth of

the errors and is not really relevant in addressing our

central question. Using a perfect model assumption

and running the global convection-permitting model is,

in our opinion, the best way to get an accurate estimate

for the intrinsic predictability limit. We further note

that using a perfect model assumption in the intrinsic

predictability experiments also means that the ‘‘up to

5 days’’ potential gain reported in Z19 for midlatitude

synoptic weather system requires a reduction of both

themodel error and the initial-condition errors. For the

practical predictability (EDA experiment in Z19), we

agree with ZS that the choice of perturbation methods

and the model error have an impact. Indeed, ECMWF

keeps using singular vectors to generate their ensemble’s

initial perturbations to improve the ensemble reli-

ability in the short forecast range, as they documented

in several papers. Nonetheless, through comparison

with results using the TIGGE dataset for the same

event, we argue that the use of 10 EDA members

in Z19 is reasonable and we show that different

2 Figure 2 of ZS shows their results for each horizontal scale

when the initial-condition errors are reduced by 75% and 99%.
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perturbation methods and model errors mainly influ-

ence the forecast uncertainty in the first 2 days. The

authors also disagree with ZS about the suggestion of

using the parametric model in ZS to predict the effects

of reducing the initial-condition errors due to strong

interactions between different scales.
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